
1

What The Heck
Was

UCSD Pascal?

Richard
Kaufmann

2 http://www.threedee.com/jcm/psystem/index.html

http://www.threedee.com/jcm/psystem/index.html

3

Think back to 1974…
• UCSD’s main computing environment

– A Burroughs B6700 “Beast”
• Algol was the main system language

– Some amazing architectural features
» Stack architecture, “thunks,” compiler-

enforced security, 48-bit words
– Kind of an oddity on your résumé, even then…

• Student access was via punch cards and
listings

– Turnaround times of hours or even days
– The elite got access to timesharing terminals

• Usage carefully monitored and billed
– There are some major cyber-criminals in this

room!
– Some renegade departments with PDP-11s

• Running Unix v6, RT-11, RSX-11

http://www.inf.ufrgs.br/site/hist/images/b6700_02.jpg

4

5

Kids these days have it too easy!
Moore’s Law: 32 years 2 = 2,600,000X

• In 1972, a PDP-11/10
consumed half of a 19” rack
& ~$30K ($100K adjusted
for inflation)
– One processor
– 56K of physical memory

• 16 bit VAs
– 10MB hard drives were huge and

noisy (disks were
interchangeable)

– Dual floppy disk drives
(capacity: 160KB each!)

– Instructions took ~4usec ea.

• An x86 box consumes 1/40th

of a 19”rack & ~$10K

– Two processors (2X)
– 16GB of physical memory

(300,000X) 64 bit VAs (48 active)

– 2*300GB hard drives: silent,
small and fixed (60,000X)

– DVD±R: 4.7GB (30,000X)
– Instructions retire every 300-

500 picoseconds per CPU
(8,000X faster per CPU * 2)

32
1.5

6

Enter UCSD Pascal

• UCSD needed a new intro programming
course
– Pascal instead of Burroughs Algol

• Designed as a teaching language
• Simple, expressive, encouraged good habits

– Interactive instead of Batch
• No arcane rituals (e.g. JCL)
• Inexpensive computing resources
• Instant feedback / gratification

7

Support for Courseware
• Edit-Compile-Run cycle

highly tuned for students
– Compiler or runtime error

pops the user back into the
Editor, showing where/why
the problem occurred

• StuPID bit controlled
whether this was
automatic, not one of our
more politically correct
moments

• Extensive set of quizzes
developed for the intro
programming course

8

9

Turtle Graphics
• Adapted Seymour Papert’s LOGO

– Turn(degree), TurnTo(degree)
– Move(units), MoveTo(x,y)
– PenColor(color)

• Great teaching tool
– Intuitive
– Rich & Expressive
– Helped artsy types relate to

computers

PROGRAM POLYGONS;
VAR SCALE: INTEGER;

PROCEDURE POLY(NSIDES,LGTH,
ANGLE,X,Y:INTEGER);

VAR I: INTEGER;
BEGIN

MOVETO(X*SCALE,Y*SCALE);
PENCOLOR(WHITE);
FOR I:=1 TO NSIDES DO
BEGIN
MOVE(LGTH*SCALE);
TURN(ANGLE);

END;
PENCOLOR(NONE);

END;

BEGIN (* MAIN PROGRAM *)
SCALE:=3; (* TERAK *)
POLY(5,16,72,-30,-30);
POLY(40,2,9,-30,6);

END.

Source: “Microcomputer Problem Solving Using UCSD Pascal” (Ken Bowles 1977)

10

11

Both a blessing and a curse:
What could you fit in 64K?

• It sure kept the
system clear of
clutter!
– ~10K of interpreter and

raw device drivers
– System + application

code = ~20K - ~30K
• Winword.exe is 12MB, not

including shared libs.
~1,000X code bloat!

– User stack + heap = the
rest

Stack

Heap

Interpreter
0x0000

0xFFFF

12

P-Code
• Extended compiler intermediate language from Urs Ammann’s P2

compiler (ETH-Z)
– With a little influence from Burroughs’ B-Code
– Variable-length instructions

• Single-byte for the most common stack ops (e.g. push a small constant)
• Very slow (10X – 20X slower than native code)

– Mitigated by intrinsics (e.g. byte move, scan and fill, reserved word
lookup), and user patience

• PROCESSOR INDEPENDENT
– The intellectual granddaddy of Java bytecode
– Ported to PDP11, 8080/6, Z80, GA, TI, 6502, 6800 and ~10 others
– Well-written code moved to other architectures without

recompilation
• “Endian-ness” issues (before it was even called that!)

• Very much a creature of 16-bit architectures

13

What About The System?
• Simple, simple, simple

– Entire OS source was 2300
lines!

• Simple File System
– Non-hierarchical directories
– Contiguous files

• User-initiated defrag
(“K(runch”)

– 77 files per volume
– 15 character filenames
– Specialized text file format

(compressed leading spaces)
• Simple memory management

Roger’s License Plate
(Yes, back then it was yellow text on a blue background!)

14

And the compiler…
• Used the ETH-Z P2 compiler as its base
• Recursive descent

– Personal opinion: if a programming language can’t
be parsed simply, it doesn’t need to live!

• Single pass – P-code emitted on the fly
– Later incarnations had a “half-passed” fixup

• Simple enough transformation
– Compiler was small and reliable
– You could still watch it think, though!

15

BEGIN (*BLOCK*)
REPEAT

IF SY = LABELSY THEN
BEGIN INSYMBOL; LABELDECLARATION END;

IF SY = CONSTSY THEN
BEGIN INSYMBOL; CONSTDECLARATION END;

IF SY = TYPESY THEN
BEGIN INSYMBOL; TYPEDECLARATION END;

IF SY = VARSY THEN
BEGIN INSYMBOL; VARDECLARATION END;

WHILE SY IN [PROCSY,FUNCSY,PROGSY] DO
BEGIN LSY := SY; INSYMBOL;

IF LSY = PROGSY THEN SEGDECLARATION
ELSE PROCDECLARATION(LSY,FALSE)

END;
IF SY <> BEGINSY THEN

IF NOT (INCLUDING AND
(SY IN [LABELSY,CONSTSY,TYPESY,VARSY,

PROCSY,FUNCSY,PROGSY])) THEN
BEGIN ERROR(18); SKIP(FSYS) END

UNTIL SY IN STATBEGSYS;
DP := FALSE; IC := 0; LINEINFO := 0;
IF SY = BEGINSY THEN INSYMBOL ELSE ERROR(17);
IF NOT SYSCOMP THEN FINDFORW(DISPLAY[TOP].FNAME);
REPEAT BODY(FSYS + [CASESY]);

IF SY <> FSY THEN
BEGIN ERROR(6); SKIP(FSYS + [FSY]) END

UNTIL (SY = FSY) OR (SY IN BLOCKBEGSYS);
END (*BLOCK*) ;

16

Execution Environment
• “Segment procedures” used to control code

residence
– P-code loaded onto the stack from disk at call; code

space reclaimed at exit
– The user’s program was really a segment procedure to

the “real main program,” the system.
• Mark/Release heap model

– Mark(ptr) stored the current heap pointer,
Release(ptr) cut the heap back to that point

– Simple, but sharp edges!
• Conservative automatic garbage collectors a little too

rich for our blood!

17

The Screen Editor
• Consumed all spare time my junior and senior years
• In a world of 80 x 24 terminals, a WYSIWYG editor for

flat text
– Lots of help for Pascal programmers

• Auto-indentation
– A single, flat buffer to hold the source file

• Y’all can guess how big a file it could edit!
• Insertion: move everything to the right to make a hole!

• Later incarnations:
– Handled arbitrarily large files, some fancier word

processing features
• Hand-in-hand. Zero-sum game between new features

and maximum file size!
• Nascent hypertext and macro processing
• Outgrew its foundations

– Not the only guilty party…

18

19

• Workstation built around the
LSI/11 chipset
– 56K of memory (8K I/O space hurt!)
– Single 8” 160K floppy
– 320 x 240 B&W bitmap graphics
– Keyboard layout customized for

UCSD Pascal
• Very svelte in its day!
• Replaced the PDP 11/10s for the

teaching labs

Source: The Terak Museum

20

Apple][c
• Based on a 1MHz Mostek

65C02
– Our first units: 40 x 24!

• OK if you didn’t indent too
much!

• 64KB max
• 5 ¼” floppies, ~140KB

• Replaced the Teraks
• Apple did a great job

popularizing UCSD Pascal
http://www.s-line.de/homepages/horber-privat/apple2a.htm

21

What Was Good About
UCSD Pascal?

• It could host itself
– The system, tools, applications and compiler were

all written in Pascal
– Bootstrapped from the B6700

• Cutting the ties was WONDERFUL
• It was intuitive enough to use in introductory

programming courses
• It was portable

– This was a first. Unix didn’t leave the PDP-11 until
much later, and then not in binary

– Rigorously separated porting vs. development
effort

22

More Good Stuff
• Source was (at the start) freely distributed, and had a vibrant

community of folks developing, extending and using it
• Raised the bar for micro-based software

– Consistent, friendly user interface; smooth operation
• Starting point for Apple’s][Lisa Macintosh thrust
• Development platform for a Cray P-code to P-code optimizer
• Some interesting hardware developments

– The Terak (more later)
– NCR and Western Digital built custom processors for UCSD Pascal

variants
– Northwest Micro (Randy Bush), HP, many other had hardware

packages optimized for UCSD Pascal
– A line of Tektronix logic analyzers was built on top of UCSD Pascal

• It was an amazing education for those of us on the project

Pictures: Tektronix brochure, http://gallery.brouhaha.com/microengine

23

What Happened?
• Its virtues became its constraints

– 16-bit flat addressing model for code+data
• 64K very, very simple code
• No space for fancier software, larger problems, …

– 16-bit flat address space couldn’t effectively use the
8086’s segmented memory model

• MS-DOS could, even if you had to hold your nose
• Attempts at JIT native compilation didn’t pan out

– Valiant attempt
– Even better performance required to fend off Borland

Pascal (speed demon)
• Renaissance System built a great 68K native compiler, but too

late…
• We all graduated and went off to better things ☺
• The era of SofTech Microsystems

– MarkO to talk about at the panel discussion

24

Credits

• John Foust, “The UCSD Pascal Museum”
& “The Terak Museum” (http://www.threedee.com/jcm)

	What The Heck Was�UCSD Pascal?
	Think back to 1974…
	Kids these days have it too easy!�Moore’s Law: 32 years 2 = 2,600,000X
	Enter UCSD Pascal
	Support for Courseware
	Turtle Graphics
	Both a blessing and a curse:�What could you fit in 64K?
	P-Code
	What About The System?
	And the compiler…
	Execution Environment
	The Screen Editor
	Apple][c
	What Was Good About�UCSD Pascal?
	More Good Stuff
	What Happened?
	Credits

